
International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1762
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Software Release Time Determination: A
Combination of Three Attributes

Dr. Subhadra Rajpoot

Abstract - The quality of the software system usually depends on how much time testing takes and what testing methodologies are used. More we
spend on testing; more errors can be removed, which leads to more reliable software. However, the testing cost of the software will also increase during
this process. On the other hand, if testing time is too short, the cost of the software could be reduced, but the customers may take higher risk of buying
unreliable software. Therefore, it is important to determine when to stop testing, and release the software. In this paper, we propose a new method to
estimate the optimal software release time by using Multi Attribute Utility Theory. More precisely, three significant attributes are used to determine the
optimal release time. We apply a non-homogeneous Poisson process model to the formulation of software reliability, cost and behaviour of detection
rate. It can be concluded throughout numerical examples that the existing optimal software release policy underestimates and overestimates the real
optimal software release time.

Index Terms— Multi Attribute Utility function, Detection rate, Software Reliability Growth Model.

 ——————————  ——————————

INTRODUCTION

With growing penetration of information technology,
computer software is playing an important role in our lives.
Software reliability becomes a problem that can’t be
overlooked. Many models (generally called software
reliability growth models, SRGM) have been proposed to
describe the software testing processes. A software
reliability growth model (SRGM) can be considered to be a
mathematical expression which fits the experimental data.
G-O, Yamada, K-G models are most well-known models
among these models [1, 8, 12, 17, 18, 19, 23]. GO model
assumes that the number of defects detected up to time t
follows a non-homogenous Poisson process (NHPP) with
constant detection rate, Yamada and K-G assume that the
total number of defects at the start of testing is a known
constant, detection rate is function of time and the failure
rate at any time is proportional to the number of defects
remaining at that moment [2,3].

Software release is one of the most prominent issues
involved in software development to decide upon the most
appropriate software release plans. The problem of
determining when we should stop testing emerges. If we
stop testing too early, there may be too many defects in the
software, which will result in too many failures during
operation, and lead to significant losses due to the failure
penalty or user dissatisfaction. On the other side, spending
too much time in testing may result in a high testing cost
and delay the introduction of the product into the market
place. Therefore, there is a trade-off between software

testing and releasing.

In late years, due to the significance of software application,
professional testing of software becomes an increasingly
important task. Once all detected faults are removed,
project managers can begin to determine when to stop
testing. Software reliability has important relations with
many aspects of software, including the structure, the
operational environment, and the amount of testing.
Actually, software reliability analysis is a key factor of
software quality and can be used for planning and
controlling the testing resources during development [2,3].
Debian: in recent years, the project has faced increasingly
delayed and unpredictable releases. Most notably, the
release process of Debian 3.1 was characterized by major
delays. Initially announced for December 1, 2003, the
software was finally released in June 2005 – a delay of one
and a half years. By the time the new version was released,
the previous stable release was largely considered out of
date and did not run on modern hardware [].

GNU tools: despite their popularity and importance,
development has been slow in recent years and there is a
long interval between releases. Version1.13 of tar came out
in August 1999, followed by version 1.14 at the end of 2004.
The compression utility gzip saw a new version in
December 2006, more than a decade after the last stable
release in 1993. As a consequence of these long delays
between stable releases, several vendors started shipping
pre-releases. Thus there is a trade-off, and the issue is to
find an optimal point at which costs justify the stop
decision [].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1763
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Yang, et. al worked on the approach taken is to minimize
the expected total cost (ETC) of the software project, or
further consider the software reliability requirement[24].
Yun et al. [25] study the optimal software release problem
based on software reliability growth models with random
life–cycle length. Yamada et al. [19,20] present an optimal
software release problem based on a dual constraint of
minimizing a total average software cost and satisfying a
reliability requirement. Brown [2] describes a cost model to
determine the optimal number of test cases.

This stream of research is closely related to the broader
software reliability literature, a good summary of which is
provided by Pham [6,11] and Kapur [3,4,5,7,31,32]. In all
these studies, the optimal release time is determined from
the cost and reliability viewpoint. Testing should continue
until the gain from the improved reliability cannot justify
the cost of continued testing. An implicit assumption made
in these studies is that software testing stops completely
after release. Recently many researchers have used Multi
attribute utility theory to find the optimal release time of
new version of software by combining different attributes
like cost, reliability, and failure intensity. Several
researchers have done work on multi attribute utility
theory to determine the release time of software by
combining two attributes like cost and reliability, cost and
failure intensity etc. X. Li, et alproposed open source
software release based on release indicator and reliability
using MAUT [21]. Lately Kapur et al. solved a release
problem using cost and failure intensity as attribute [].
Recently Kapur et al. defined a scenario of release time
using different structure of multi attribute utility function
combining just two attribute reliability and cost [5]. These
studies by different researcher are bound for two attribute
only.

In this paper, we address the problem faced by most
software managers, namely, time to stop testing or time of
releasing software using three different attribute. This is a
problem of decision-making under uncertainly and
involves a trade-off among reliability; cost and detection
rate indicator (rate of change of detection rate).

We will further investigate the modelling of fault removal
process using logistic distribution functions. Specifically,
the multi-attribute utility theory (MAUT) is adopted for
determining the optimal time for release, where three
important strategies are considered simultaneously:
reliability of software, rate of change of detection rate and
the acceptable level cost. The paper is outlined as follows:

In Sec 2, we have discussed basic modeling of SRGM. In
Section 3 we have described the theme of our discussion i.e.
problem of releasing software in the market and later we
have used MAUT as an evaluation approach to formulate
the problem followed by numerical illustration in Sec 4.
Conclusion and Acknowledgement are given in section 5
and 6 respectively.

SOFTWARE RELIABILITY MODELLING

SRGM is mathematical model. It shows how software
reliability improves as faults are detected and repaired.
SRGM can be used to predict when a particular level of
reliability is likely to be attained. Software reliability
models which assume that software failures display the
behaviour of a non-homogeneous Poisson process
(NHPP).The parameter of the stochastic process, which
denotes the failure intensity of the software at time , is time
dependent. Let denote the cumulative number of faults
detected by time , and denote its expectation.

Then, and the failure intensity is related as follows:

0
() ()

t
m t s dsλ= ∫

and,
() ()dm t t

dt
λ=

()N t is known to have a Poisson probability mass function with

parameter ()m t , that is:

{ } ()() exp ()
() , 0,1, 2,...

!

nm t m t
Pr N t n n

n
⋅ −

= = =

Various time dependent models have appeared in the
literature which describes the stochastic failure process by
an NHPP. These models differ in their failure intensity
function and hence . Let ‘ ’ denote the expected number of
faults that would be detected given infinite testing time in
case of finite failure NHPP models. Then, the mean value
function of the finite failure NHPP models can also be
written as [1,6,8,9,10,11,12].

 (1)

where is a distribution function.

APPLIED MODEL AND MODEL ASSESSMENT

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1764
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In our model, NHPP is used to describe the time-dependent
nature of the cumulative number of faults detected up to a
specific testing time.
The differential equation for describing the removal
phenomenon can be given by:

[]

[]

() () ()

. ()
(1)bt

dm t b t a m t
dt

b a m t
eβ −

= −

= −
+

Solving the above differential equation (1), under initial
condition, we get mean value function as[6, 7]:

() 1. () .
1

bt

bt

em t a F t a
eβ

−

−

 −
= =  + 

Logistic Distribution model proposed by Kapur and Garg is
S-shape in nature. We use S-shape curve software reliability
model to capture all possible behavior of data set. The
analysis can be similarly carried out using any other model.
Model assessment evaluates how well a data-set conforms
to a chosen model. An important objective of model-based
software reliability analysis is to guide decisions by
providing accurate future predictions. Thus, a model that
fits the observed data well, but makes poor predictions,
raises serious doubts regarding its practical utility. The R2
is a complimentary measure of a model's statistical
adequacy [13,14,15,16,17,18]. The value of the estimated
parameters of all the models and value of R2 are given in
Table-1.

Parameter Estimation
SRGMs Parameters

K-
G(Logistic)

a b β 2R
113 0.12 3.22 0.989

DETERMINATION OF RELEASE TIME

Decision-making is a process of choosing among alternative
courses of action in order to attain goals and objectives.
Release time of software, for example, involves deciding

when should be done? Where? Other managerial functions,
such as organizing, implementing, and controlling rely
heavily on decision making.
Multi-Attribute Utility Theory (MAUT) is a structured
methodology designed to handle the tradeoffs among
multiple objectives. One of the first applications of MAUT
involved a study of alternative locations for a new airport
in Mexico City in the early 1970s. The factors that were
considered included cost, capacity, access time to the
airport, safety, social disruption and noise pollution. Utility
theory is a systematic approach for quantifying an
individual's preferences. It is used to rescale a numerical
value on some measure of interest onto a 0-1 scale with 0
representing the worst preference and 1 the best
[24,26,27,28,29,30].
To tackle these two conflicting factors simultaneously,
multi attribute utility theory (MAUT) is adopted in our
decision model. The application of MAUT can obtain a one-
dimensional multi-attribute utility function, which is the
measure of the attractiveness of the conjoint outcome of
attributes given a specified alternative.

Let 1 2 3, , nx x x x , 2n ≥ , be a set of attributes
associated with the consequences of a decision problem. The
utility of a consequence (1 2 3, , nx x x x) can be
determined from
Decomposed assessment: estimate n conditional utilities

()i iU x for the given values of the n attributes; and compute

1 2 3(, ,)nU x x x x by combining the ()i iU x of all
attributes:

1 2 3 1 1 2 2 3 3(, ,) ((), (), ().......... ())n n nU x x x x f U x U x U x U x=
, 1....i n=

Identifying the Relevant Attributes
The attributes we are seeking should be the most important ones
deemed relevant to the final decision. They should preferably be
mutually exclusive: the attributes should be viewed as
independent entities among which appropriate trade-offs may
later be made. Most importantly, the chosen attributes should be
measurable in a meaningful and practical way, for each of the
proposed alternatives.

When considering the attributes for optimal release of any
software the main objective of software industry is to prepare
software which is much reliable and satisfy the customer needs.
Software reliability represents a customer oriented view of
software quality. Therefore maximizing software reliability is
also a major concern of management. A simple index to measure
the reliability is the ratio of the number of cumulative detected

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1765
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

faults at time t to the mean value of initial faults in the software.

Hence, the attribute reliability can be represented by
()m t
a

 and

it should be maximized.
()m tMaximize R
a

= (5)

Where the approximated reliability R is attribute in MAUT.
Since the reliability is an increasing function of time, it reaches its
maximum when time goes to infinity.

Many software reliability models (SRMs) have been proposed to
explain the software fault detection process and to quantify the
different metrics that are related to system reliability
[13,14,15,16,17,18]. These SRMs follow a wide variety of fault
detection rates. A majority of these SRMs first choose a well-
known mathematical distribution to characterize the software
fault detection rate, and then interpret the parameters of the
chosen distribution in the context of the testing process. For
example, an early SRM developed by Goel and Okumoto
assumed a constant fault detection rate. Yamada used time
dependent detection rate. Common sense, however, suggests that
one must first identify the characteristics or behaviour of the
detection rate that drives the fault detection process followed by
cumulative number of faults i.e. how detection rate is changing as
testing process goes on. To measure the rate of change of
detection rate we differentiate the detection rate ()b t used in
equation (2).

2
'

2()
(1)

bt

bt

b eb t
e

β
β

−

−=
+

 (6)

We use ' ()b t as an attribute to measure the behaviour of

detection rate. It is reasonable to assume that the ' ()b t follows a

hump-shaped curve. It is worth noting here that ' ()b t reaches its

maximum value
2

'
max()

4
bb t = at

1 logt
b

β= . This new

attribute is called Detection Rate Indicator (DRI) and defined as
which is to maximize.

'

'
max

()
()
b tMaximizeD

b t
= (7)

On the other hand the software performance during the field is
dependent on the reliability level achieved during testing. In
general, it is observed the longer the testing phase, the better the
performance. Better system performance also ensures less number
of faults required to be fixed during operational phase. On the
other hand prolonged software testing unduly delays the software
release. Here we wish to determine the optimal testing time of
software so that the total expected costs of the software can be
minimized. For this purpose we construct a cost model for the
software by assuming that there are three type of cost

() () ()1 2 3C T C m T C a m T C T = + − + 

Where,

1C be the cost of fixing a fault during testing phase.

2C be the cost of fixing a fault during operational phase.

3C is the testing cost per unit testing time.

()m T is the expected number of faults removed during testing
phase.

()C T is the total cost.

A firm never wants to spend more than its capacity, therefore the
next attribute that we consider is:

()C TminC
C

=
B

Where, BC is the total budget allocated to the firm.

Elicitation of single utility function for each attribute

The single utility function for each attribute represents
management’s satisfaction level towards the performance of each
attribute. It is usually assessed by a few particular points on the
utility curve [24,26,27]. More specifically, suppose that the single
utility function for cost is to be determined, the worst and best
values of cost are selected first as C+ andC− . These values are
of great importance because C+ and C− represent its lowest
cost and its highest cost expectation respectively. At these
boundary points, we have () 1u C+ = and () 0u C− = . Finally,
to determine functional form of utility functions either an additive
or exponential form needs to examine through interviews, surveys
or lottery. It may be noted that we use lottery when there is a
preference or indifference between two lotteries. If they are equal
to each other, management is risk neutral and the linear form
should be used. Otherwise, if management is not risk neutral then
the exponential form will be selected.

() . () exp(.)u C l m C or u C l m k C= + = +

Where, l , m , k are constants. The single utility functions ()u R
and ()u D for the reliability can be obtained as well [26,28].

Estimation of weight parameters

In this section we have discussed about estimation of weight
parameters cw , Dw and Rw . There are two common methods to
assess the scaling constants: certainty scaling and probabilistic
scaling [28,29,30]. Given that the number of attributes considered
in our problem is only three and this is a small number, the
probabilistic scaling technique is recommended for use.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1766
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In probabilistic scaling, management is asked to compare the

choices. Let (, ,)R D C+ + + and (, , C)R D− − − denote the best
and worst possible consequence respectively. There is a certain

joint outcome (, ,)R D C+ + − comprised three attribute R , D
and C at the best and worst level with probability ,p q and

(1)p q− − , respectively. In these situations, the weight for

attribute R equals p , where p is the indifference probability

among them, [29,30]. At indifference, (1)q and p q− − is
equal to the weight parameters for the detection rate indicator and
cost. Since the sum of weight parameters must be equal to one,
the other weight parameter Dw Rw can be obtained with ease.

Structure of Multi Attribute Utility Function (MAUF)

Based on the previously estimated single utility functions and
scaling constants, choosing the structure of the multi-attribute
utility function is important.
The additive linear form of the MAUF is given as [26,27,29,30]:

(, ,) () () ()R D CU R D C w u R w u D w u C= × + × + ×

1R D Cw w w+ + =

Where Rw , Dw and cw are the weight parameters for attribute R
, D and C respectively. ()u R , ()u D and ()u C are the single
utility function for each attribute i.e. for reliability, detection rate
indicator and cost respectively. From the manager’s point of view
R and D are to be maximized while cost attribute C is to be
minimized. To synchronize the two utility together, we convert
minimization of cost utility by multiplying “–‘sign before cost
utility. By maximizing multi-attribute utility functions, the
optimal time to release, *T will be obtained.

NUMERICAL EXAMPLE

Data [22] comprises of four successive releases. The proposed
decision model has been validated for its first release. We will
find the release time of software for using first release data. The
first version of software is released after 20 weeks.
For management, it is of utmost importance to predict the optimal
release time. The Multi Attribute Utility Theory approach is used
to determine the release time. Multi-Attribute Utility Theory
(MAUT) is a label for a family of methods. These methods are a
means to analyze situations and create an evaluation process. The
objective of MAUT is to attain a conjoint measure of the
attractiveness (utility) of each outcome of a set of alternatives.

Quantification of Attributes

As discussed, reliability R D and cost C are three important
factors for management to determine the optimal release. Based
on the failure data shown in Table 1, the model parameters can be
estimated as shown in Table 2. Then, these three attributes are
quantitatively measured by (5) (7) and (8).
The reliability attribute defined in equation (6) is the ratio of
number of faults removed up to time t to the total number of

faults in the software. The number of faults removed up to time t
, ()m t reaches its maximum value at maxt = ∞ .

Similarly for the second attribute given by equation (7) is the ratio
of change in detection rate to maximum change in detection rate.
For other attribute i.e. cost we use the cost model as discussed

earlier in Section (3).We set parameters 1 15C = , 2 18C = ,

3 5C = and 20000BC = as parameters of cost function. The

cost function is then calculated using the value of estimated
parameters as given in the Table.2.

Elicitation of single utility function for each attribute:

The single utility function for each attribute is elicited based on
the management’s own scenarios. Since these management
scenarios are subjective assessments from management, they may
not be precise. Suppose that management scenarios in our
application example are as follows:

 For Reliability, management has verified that at least 70% of

software faults should be detected; its highest expected value
is 100%.

 For Detection Rate Indicator, management has verified that
70% of change in detection rate show minimum, while its
highest expected value is 100%.

 Under minimization cost strategy, management indicates that
at least 60% of budget must be consumed.

According to the above management decision, some important
points on the utility curve are obtained. In particular, for third

release the lowest reliability requirement is 0 0.7R = and the

maximum reliability expectation is 1 1R = . The lowest change in

detection rate is 0 0.7D = and the highest change is 1 1D = .

The lowest cost requirement is 0 0.6C = and the highest cost

expectation 1 1C = . Additionally, based on management’s risk
neutral attitude towards these attributes, three form of the single
utility function should be used. Specifically, we have

5 5()
4 2

u C C=− +
1 5()
4 2

u D D=− + and

7 10()
3 3

u R R=− + .It is worth noting here that although the

linear form is simple for evaluating the utility for the attributes
[21,26,27].

Estimation of weight parameters:

The weight parameter Cw is estimated by comparing the two
choices by lottery approach [29,30]. Management has claimed
that it is indifferent among these choices when p is equal to 0.3;
hence 0.3Cw = i.e. the weight related to cost parameter is 0.3.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1767
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

It is easy to calculate R Dw and w based on the sum of weight

parameters is equal to one, therefore Rw , Dw are respectively .4
and .3.

Maximization of multi-attribute utility function

Finally, based on the estimated single utility functions and the
weight parameter, the multi-attribute utility function is evaluated
using three attributes.

The Multi Attribute Utility Function is maximized by using of
Maple package Software and the optimal time to release the first
version of software. The optimal Release time is given in table-4.

Table-4
Model Optimal Release

time *T
Utility Value

 20.07 .750

According to Tandem data failure, real time to release
thefirstversion of software is 20weeks. Based on optimal result,
we can say that software in first release must release after this
time.
Figure-1 shows the multi attribute utility function for first release
of software. Figure-2 represents the behavior of the cost function
for first release.

Figure-1: Utility function graph

Figure-2: Cost function graph

SENSITIVITY ON WEIGHT OF ATTRIBUTES

Optimal release time can be determined by maximizing the multi-
attribute function. However, since most parameters in the MAUT
are obtained based on the subjective assessments from
management, the optimal introduction time received may not be
precise. The weight attached to each attribute is purely
management decision. Different combination of attributes can be
used by attaching different weights to them. In numerical
example we have find the release time with fixed weight .3,.4,.3,
for cost, reliability and detection rate indicator respectively.
Accordingly for choice of different weight for attributes,
sensitivity analysis is needed. Sensitivity analysis is generally
done by changing one parameter and setting the other parameters
at their fixed values. We choose different combination of weight
for three attributes and find optimal release time as we have done
in our numerical example section. Sensitivity for weight
parameter and respective release time are summarized in
following table.

Comb
inatio
n No.

Sensitivity on weight
Weights Optimal

Values
Single Attributes Utility

cw

Rw

Dw

*T

M
ult
i

Uti
lit
y

(CC
Bu

=

(mR =

' (bD
b

=

1 .3
0

.4
0

.3
0

20 .75 .094 .720 .650

2 .3
0

.3
0

.4
0

15 .95 .096 .730 .890

3 .2
9

.2
9

.4
2

14
.9
7

.98 .091 .540 .910

4 .2
0

.4
0

.4
0

17 .81 .095 .613 .810

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1768
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5 .4
0

.4
0

.2
0

31
.8

.76 .094 .914 .264

6 .4
0

.3
0

.3
0

17
.6
3

.87 .095 .633 .805

Optimal release times for different choice of weight for three
attributes are given in above table. The final utility values along
with single utility value for three attributes are given in last four
columns in above table. Different combination of weight gives
different release time which shows its sensitivity. Management
has several choices for release time according to their preference
in attributes. One thing is very clear from the table that changing
weight for cost parameter does not affect its own utility value.
While weight parameter is very sensitive for rest two attributes. If
we increase or decrease the weight of reliability its own utility
follows same. Similarly for detection rate indicator is happening
(Combination No 5, 1, 2, 3). This shows the importance of
reliability and detection rate indicator as an attribute. Less weight
to detection rate indicator gives bad release time (Combination
No 5).

CONCLUSION

The strategy behind the developing and releasing software is not
an easy thing. Most of organizations are struggling to find the
exact release time of software. From a management point of view
it is important to understand the balance between reliability of
software and cost. A vital decision problem that the software
developer encounters is to determine when to stop testing and
release the software system to the user. If the release of the
software is unduly delayed, the manufacturer (software
developer) may suffer in terms of penalties and revenue loss,
while a premature release may cost heavily in terms of fixes
(removals of faults) to be done after release, which consequently
might harm the manufacturer’s reputation. On one hand, when
there is limited cost budget for testing, the software is expected to
be tested in such a manner that it costs reasonable.In order to
make a judicious decision on the optimal time of release of
software, a decision model based on MAUTis proposed. We
maximize the Multi attribute utility function using cost, reliability
and detection rate indicator and obtained optimal release time.We
conduct sensitivity analysis for weight parameter. We find
different optimal release time for different combination of weight
for attributes.

REFERENCE

1. K. Okumoto and A. L. Goel, "Optimal release time for
computer software," IEEE Transactions on Software
Engineering, vol. 9, pp. 323-327, 1983.

2. D. B. Brown, S. Maghsoodloo, and W. H. Deason “A

cost model for determining the optimal number of test
cases” IEEE Trans. on Software Engineering,
15(2):218–221, February 1989.

3. P. K. Kapur, H. Pham, Anu G. Aggarwal, Gurjeet Kaur,
"Two-dimensional multi-release software reliability
modelling and optimal release planning" IEEE Trans on
Reliability, Vol. 61 (3), pp. 758-768, 2012

4. P. K. Kapur, A. tondon, G. Kaur, "Multi up- gradation
software reliability model," 2nd international conference
on reliability, safety & hazard (ICRESH-2010), pp-468-
474, Mumbai, 2010.

5. P K Kapur, V B Singh, Ompal Singh, Jyotish N P
Singh, software release time based on differentmulti-
attribute utility functions” International Journal of
Reliability, Quality and Safety Engineering, Vol. 20,
No. 4 (2013) 1350012 (15 pages).

6. H. Pham and X. Zhang, "Software release policies with

gain in reliability justifying costs," Annals of Software
Engineering, vol. 8, 1999.

7. P. K. Kapur and R. B. Garg, "Cost reliability optimum

release policies for a software system with testing
effort," Operations Research, vol. 27, pp. 109-116,
1990.

8. H. Pham, Software Reliability. Singapore: Springer,
2000.

9. Kapur, P. K., Pham, H., Gupta, A. and Jha, P.C. (2011),
“Software Reliability Assessment with OR
Applications”, Springer –UK.

10. H. Ohtera and S. Yamada., “Optimum software-release

time considering an error detection phenomenon during
operation” IEEE Trans. on Reliability, 39(5):596–
599, December 1990.

11. H. Pham and X. Zhang., “A software cost model with

warranty and risk costs”. IEEE Trans. on Computers,
48(1):71–75, January 1999.

12. R. S. Pressman. Software Engineering: A Practitioner’s

Approach. McGraw Hill, 1997.

13. S. M. Ross. “Software reliability: The stopping rule
problem”. IEEE Trans. on Software Engineering, SE-
11(12):1472–1476, December 1985.

14. Musa JD, Iannino A, Okumoto K. “Software reliability:
Measurement, Prediction, Applications” 1987; New
York: Mc Graw Hill.

15. L. Goel and K. Okumoto, "Time-dependent error-

detection rate model for software reliability and other
performance measures," IEEE Trans. on Reliab., vol.
28, pp. 206–211, 1979.

16. M. Obha, "Software reliability analysis models," IBM
Journal of Research and Development, vol. 28, pp. 428–
443, 1984.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1769
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

17. M. Xie, Software Reliability ModelingWorld Scientific
Publishing, 1991.

18. H. Pham, System Software Reliability. U. K.: Springer-

Verlag, 2006.

19. Yamada, S., Ohba, M. and Osaki, S. (1984), “S-shaped
software reliability growth models and their
applications”, IEEE Trans. on Reliability, Vol. 33 No.
4, pp. 289–292.

20. Yamada, S., Narihisa, H., Osaki, S., (1984), “Optimum
release policies for a software system with a cheduled
software delivery time”, International Journal of
Systems Science, Vol. 15 No. 8, pp. 905–914.

21. Li, X., Li, Y.F., Xie, Min. and Ng, S.H. (2011),
“Reliability analysis and optimal version-updating for
open source software”, Information and Software
Technology, Vol. 53, pp. 929–936.

22. Wood,, "Predicting software reliability," IEEE

Computer, vol. 9, pp. 69-77, 1996.

23. Kapur PK, Garg RB, Kumar S. “Contributions to
hardware and software reliability” 1999; Singapore:
World Scientific Publishing Co. Ltd.

24. M. C. K. Yang and A. Chao. “Reliability-estimation and

stopping-rules for software testing based on repeated
appearance of bugs”. IEEE Trans. on Reliability,
44(2):315–321, June 1995.

25. W. Y. Yun and D. S. Bai., “Optimum software release

policy with random life cycle” IEEE Trans. on
Reliability, 39(2):167–170, June 1990.

26. Ferreira, R.J.P.,Almeida, A.T., Cavalcante, C.A.V., “A
multi-criteria decision modelto determine inspection
intervals of condition monitoring based on delay
timeanalysis,” Reliability Engineering and System
Safety 94 (2009) 905–912.

27. Fishburn, C P, Utility Theory for Decision Making,
Wiley, New York, 1970.

28. Keeney, R.L. and Raiffa, H. (1976), “Decisions with
Multiple Objectives: Preferences and Value Tradeoffs,
Wiley, New York.

29. Web reference,
http://wiki.ece.cmu.edu/ddl/index.php/Multiattribute_uti
lity_theory.

30. Winterfeldt, D. and Edwards, W. (1986), “Decision
Analysis and Behavioral Research”, Cambridge
University Press, Cambridge, UK

31. Kapur PK, Agarwala S, Garg RB. “Bicriterion release

policy for exponential software reliability growth

model” Recherche Operationnelle – Operations
Research 1994; 28: 165-180.

32. Kapur PK, Garg RB. “Optimal release policies for

software systems with testing effort” Int. Journal
System Science, 1990; 22(9), 1563-1571

IJSER

http://www.ijser.org/
http://wiki.ece.cmu.edu/ddl/index.php/Multiattribute_utility_theory
http://wiki.ece.cmu.edu/ddl/index.php/Multiattribute_utility_theory

